Nuprl Lemma : hdataflow-valueall-type
∀[A,B:Type].  valueall-type(hdataflow(A;B)) supposing ↓A
Proof
Definitions occuring in Statement : 
hdataflow: hdataflow(A;B), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
squash: ↓T, 
universe: Type
Definitions unfolded in proof : 
hdataflow: hdataflow(A;B), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
valueall-type: valueall-type(T), 
has-value: (a)↓, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
top: Top, 
compose: f o g, 
squash: ↓T, 
unit: Unit
Latex:
\mforall{}[A,B:Type].    valueall-type(hdataflow(A;B))  supposing  \mdownarrow{}A
Date html generated:
2016_05_16-AM-10_37_33
Last ObjectModification:
2016_01_17-AM-11_12_45
Theory : halting!dataflow
Home
Index