Nuprl Lemma : hdf-base-ap
∀[A,B:Type]. ∀[F:A ⟶ bag(B)]. ∀[a:A].  (hdf-base(m.F[m])(a) = <hdf-base(m.F[m]), F[a]> ∈ (hdataflow(A;B) × bag(B)))
Proof
Definitions occuring in Statement : 
hdf-base: hdf-base(m.F[m]), 
hdf-ap: X(a), 
hdataflow: hdataflow(A;B), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
hdf-base: hdf-base(m.F[m]), 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  bag(B)].  \mforall{}[a:A].    (hdf-base(m.F[m])(a)  =  <hdf-base(m.F[m]),  F[a]>)
Date html generated:
2016_05_16-AM-10_39_02
Last ObjectModification:
2015_12_28-PM-07_44_21
Theory : halting!dataflow
Home
Index