Nuprl Lemma : hdf-base-transformation1
∀[F:Top]. (hdf-base(m.F[m]) ~ fix((λmk-hdf.(inl (λa.cbva_seq(λx.⊥; λg.<mk-hdf, F[a]> 0))))))
Proof
Definitions occuring in Statement : 
hdf-base: hdf-base(m.F[m]), 
bottom: ⊥, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
fix: fix(F), 
lambda: λx.A[x], 
pair: <a, b>, 
inl: inl x, 
natural_number: $n, 
sqequal: s ~ t, 
cbva_seq: cbva_seq(L; F; m)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cbva_seq: cbva_seq(L; F; m), 
hdf-base: hdf-base(m.F[m]), 
it: ⋅, 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
hdf-run: hdf-run(P), 
callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m), 
le_int: i ≤z j, 
lt_int: i <z j, 
bnot: ¬bb, 
btrue: tt, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
nat_plus: ℕ+, 
so_apply: x[s]
Latex:
\mforall{}[F:Top].  (hdf-base(m.F[m])  \msim{}  fix((\mlambda{}mk-hdf.(inl  (\mlambda{}a.cbva\_seq(\mlambda{}x.\mbot{};  \mlambda{}g.<mk-hdf,  F[a]>  0))))))
Date html generated:
2016_05_16-AM-10_45_19
Last ObjectModification:
2016_01_17-AM-11_12_44
Theory : halting!dataflow
Home
Index