Nuprl Lemma : hdf-compose1_wf
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[f:B ⟶ C].  f o X ∈ hdataflow(A;C) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose1: f o X, 
hdataflow: hdataflow(A;B), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
hdf-compose1: f o X, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[f:B  {}\mrightarrow{}  C].    f  o  X  \mmember{}  hdataflow(A;C)  supposing  valueall-type(C)
Date html generated:
2016_05_16-AM-10_39_21
Last ObjectModification:
2015_12_28-PM-07_44_09
Theory : halting!dataflow
Home
Index