Nuprl Lemma : hdf-halted-compose2-iterate
∀[A,B,C:Type]. ∀[inputs:A List]. ∀[X1:hdataflow(A;B ⟶ bag(C))]. ∀[X2:hdataflow(A;B)].
  hdf-halted(X1 o X2*(inputs)) = hdf-halted(X1*(inputs)) ∨bhdf-halted(X2*(inputs)) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose2: X o Y, 
iterate-hdataflow: P*(inputs), 
hdf-halted: hdf-halted(P), 
hdataflow: hdataflow(A;B), 
list: T List, 
bor: p ∨bq, 
valueall-type: valueall-type(T), 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
top: Top, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
true: True, 
pi1: fst(t), 
subtype_rel: A ⊆r B, 
guard: {T}, 
squash: ↓T
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[inputs:A  List].  \mforall{}[X1:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[X2:hdataflow(A;B)].
    hdf-halted(X1  o  X2*(inputs))  =  hdf-halted(X1*(inputs))  \mvee{}\msubb{}hdf-halted(X2*(inputs)) 
    supposing  valueall-type(C)
Date html generated:
2016_05_16-AM-10_39_49
Last ObjectModification:
2016_01_17-AM-11_12_48
Theory : halting!dataflow
Home
Index