Nuprl Lemma : hdf-halted-is-inr
∀[A,B:Type]. ∀[X:hdataflow(A;B)].  X ~ inr ⋅  supposing ↑hdf-halted(X)
Proof
Definitions occuring in Statement : 
hdf-halted: hdf-halted(P), 
hdataflow: hdataflow(A;B), 
assert: ↑b, 
it: ⋅, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
inr: inr x , 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
hdf-halted: hdf-halted(P), 
isr: isr(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
false: False, 
prop: ℙ, 
btrue: tt, 
sq_type: SQType(T), 
guard: {T}
Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    X  \msim{}  inr  \mcdot{}    supposing  \muparrow{}hdf-halted(X)
Date html generated:
2016_05_16-AM-10_37_47
Last ObjectModification:
2015_12_28-PM-07_45_21
Theory : halting!dataflow
Home
Index