Nuprl Lemma : hdf-halted_wf
∀[A,B:Type]. ∀[P:hdataflow(A;B)].  (hdf-halted(P) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
hdf-halted: hdf-halted(P), 
hdataflow: hdataflow(A;B), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
hdf-halted: hdf-halted(P), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:hdataflow(A;B)].    (hdf-halted(P)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_16-AM-10_37_45
Last ObjectModification:
2015_12_28-PM-07_45_29
Theory : halting!dataflow
Home
Index