Nuprl Lemma : hdf-parallel-bag-iterate
∀[A,B:Type]. ∀[Xs:bag(hdataflow(A;B))]. ∀[inputs:A List].
  hdf-parallel-bag(Xs)*(inputs) = hdf-parallel-bag(bag-map(λx.x*(inputs);Xs)) ∈ hdataflow(A;B) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-parallel-bag: hdf-parallel-bag(Xs), 
iterate-hdataflow: P*(inputs), 
hdataflow: hdataflow(A;B), 
list: T List, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
universe: Type, 
equal: s = t ∈ T, 
bag-map: bag-map(f;bs), 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
top: Top, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
hdf-parallel-bag: hdf-parallel-bag(Xs), 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
pi1: fst(t), 
subtype_rel: A ⊆r B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
compose: f o g, 
true: True, 
has-value: (a)↓, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
Latex:
\mforall{}[A,B:Type].  \mforall{}[Xs:bag(hdataflow(A;B))].  \mforall{}[inputs:A  List].
    hdf-parallel-bag(Xs)*(inputs)  =  hdf-parallel-bag(bag-map(\mlambda{}x.x*(inputs);Xs)) 
    supposing  valueall-type(B)
Date html generated:
2016_05_16-AM-10_41_58
Last ObjectModification:
2016_01_17-AM-11_12_07
Theory : halting!dataflow
Home
Index