Nuprl Lemma : hdf-parallel_wf
∀[A,B:Type]. ∀[X,Y:hdataflow(A;B)].  X || Y ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-parallel: X || Y, 
hdataflow: hdataflow(A;B), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
hdf-parallel: X || Y, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B:Type].  \mforall{}[X,Y:hdataflow(A;B)].    X  ||  Y  \mmember{}  hdataflow(A;B)  supposing  valueall-type(B)
Date html generated:
2016_05_16-AM-10_41_33
Last ObjectModification:
2015_12_28-PM-07_43_25
Theory : halting!dataflow
Home
Index