Nuprl Lemma : hdf-rec-bind_wf
∀[A,B,C:Type]. ∀[X:C ⟶ hdataflow(A;B)]. ∀[Y:C ⟶ hdataflow(A;C)].
  (hdf-rec-bind(X;Y) ∈ C ⟶ hdataflow(A;B)) supposing (valueall-type(B) and valueall-type(C))
Proof
Definitions occuring in Statement : 
hdf-rec-bind: hdf-rec-bind(X;Y), 
hdataflow: hdataflow(A;B), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
hdf-rec-bind: hdf-rec-bind(X;Y), 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:C  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;C)].
    (hdf-rec-bind(X;Y)  \mmember{}  C  {}\mrightarrow{}  hdataflow(A;B))  supposing  (valueall-type(B)  and  valueall-type(C))
Date html generated:
2016_05_16-AM-10_44_40
Last ObjectModification:
2015_12_28-PM-07_41_20
Theory : halting!dataflow
Home
Index