Nuprl Lemma : hdf-single-val-step_wf
∀[A,B:Type]. ∀[X:hdataflow(A;B)]. ∀[P:ℙ].  (hdf-single-val-step(P;X;A;B) ∈ ℙ)
Proof
Definitions occuring in Statement : 
hdf-single-val-step: hdf-single-val-step(P;X;A;B), 
hdataflow: hdataflow(A;B), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
hdf-single-val-step: hdf-single-val-step(P;X;A;B), 
subtype_rel: A ⊆r B, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ
Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[P:\mBbbP{}].    (hdf-single-val-step(P;X;A;B)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-10_40_21
Last ObjectModification:
2015_12_28-PM-07_43_49
Theory : halting!dataflow
Home
Index