Nuprl Lemma : hdf-sqequal1
∀[F:Top]. (hdf-base(m.F[m]) ~ fix((λmk-hdf.(inl (λm.<mk-hdf, F[m]>)))))
Proof
Definitions occuring in Statement : 
hdf-base: hdf-base(m.F[m]), 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
fix: fix(F), 
lambda: λx.A[x], 
pair: <a, b>, 
inl: inl x, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
hdf-base: hdf-base(m.F[m]), 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
hdf-run: hdf-run(P), 
so_apply: x[s], 
it: ⋅, 
all: ∀x:A. B[x], 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat: ℕ, 
ge: i ≥ j , 
sq_type: SQType(T), 
so_lambda: λ2x.t[x]
Latex:
\mforall{}[F:Top].  (hdf-base(m.F[m])  \msim{}  fix((\mlambda{}mk-hdf.(inl  (\mlambda{}m.<mk-hdf,  F[m]>)))))
Date html generated:
2016_05_16-AM-10_44_55
Last ObjectModification:
2016_01_17-AM-11_12_23
Theory : halting!dataflow
Home
Index