Nuprl Lemma : iterate-hdf-bind-simple
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:B ⟶ hdataflow(A;C)].
  ∀[L:A List]. ∀[a:A].  ((snd(X >>= Y*(L)(a))) = (snd(simple-hdf-bind(X;Y)*(L)(a))) ∈ bag(C)) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
simple-hdf-bind: simple-hdf-bind(X;Y), 
hdf-bind: X >>= Y, 
iterate-hdataflow: P*(inputs), 
hdf-ap: X(a), 
hdataflow: hdataflow(A;B), 
list: T List, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
pi2: snd(t), 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
simple-hdf-bind: simple-hdf-bind(X;Y), 
hdf-bind: X >>= Y, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
top: Top, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
not: ¬A, 
false: False, 
ext-eq: A ≡ B, 
hdf-run: hdf-run(P), 
hdf-ap: X(a), 
hdf-halt: hdf-halt(), 
hdf-halted: hdf-halted(P), 
isr: isr(x), 
assert: ↑b, 
pi2: snd(t), 
simple-bind-nxt: simple-bind-nxt(Y; p; a), 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
pi1: fst(t), 
true: True, 
bind-nxt: bind-nxt(Y;p;a), 
cand: A c∧ B, 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
compose: f o g, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].
    \mforall{}[L:A  List].  \mforall{}[a:A].    ((snd(X  >>=  Y*(L)(a)))  =  (snd(simple-hdf-bind(X;Y)*(L)(a)))) 
    supposing  valueall-type(C)
Date html generated:
2016_05_16-AM-10_44_15
Last ObjectModification:
2016_01_17-AM-11_13_54
Theory : halting!dataflow
Home
Index