Nuprl Definition : flow-graph
flow-graph(S;T;F;G) ==
  ∀i,j:Id.  ((i ∈ S) ⇒ (j ∈ S) ⇒ (∀s:{s:T List| 0 < ||s||} . ((↑can-apply(F i j;s)) ⇒ (i⟶j)∈G)))
Definitions occuring in Statement : 
id-graph-edge: (i⟶j)∈G, 
Id: Id, 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
assert: ↑b, 
less_than: a < b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n, 
can-apply: can-apply(f;x)
FDL editor aliases : 
flow-graph
flow-graph
Latex:
flow-graph(S;T;F;G)  ==
    \mforall{}i,j:Id.    ((i  \mmember{}  S)  {}\mRightarrow{}  (j  \mmember{}  S)  {}\mRightarrow{}  (\mforall{}s:\{s:T  List|  0  <  ||s||\}  .  ((\muparrow{}can-apply(F  i  j;s))  {}\mRightarrow{}  (i{}\mrightarrow{}j)\mmember{}G)))
Date html generated:
2016_05_16-AM-10_06_11
Last ObjectModification:
2013_03_25-PM-01_54_17
Theory : new!event-ordering
Home
Index