Nuprl Lemma : st-encrypt_wf
∀[T:Id ⟶ Type]. ∀[tab:secret-table(T)]. ∀[keyv:ℕ + Atom1 × data(T)].  (encrypt(tab;keyv) ∈ secret-table(T))
Proof
Definitions occuring in Statement : 
st-encrypt: encrypt(tab;keyv), 
secret-table: secret-table(T), 
data: data(T), 
Id: Id, 
nat: ℕ, 
atom: Atom$n, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
st-encrypt: encrypt(tab;keyv), 
spreadn: spread3, 
secret-table: secret-table(T), 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Latex:
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].  \mforall{}[keyv:\mBbbN{}  +  Atom1  \mtimes{}  data(T)].
    (encrypt(tab;keyv)  \mmember{}  secret-table(T))
Date html generated:
2016_05_16-AM-10_03_51
Last ObjectModification:
2016_01_17-PM-01_22_09
Theory : new!event-ordering
Home
Index