Nuprl Lemma : lg-acyclic-well-founded

[T:Type]. ∀g:LabeledGraph(T). (lg-acyclic(g) ⇐⇒ SWellFounded(lg-edge(g;a;b)))


Proof




Definitions occuring in Statement :  lg-acyclic: lg-acyclic(g) lg-edge: lg-edge(g;a;b) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) strongwellfounded: SWellFounded(R[x; y]) int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q nat: guard: {T} prop: ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) le: A ≤ B less_than': less_than'(a;b) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b strongwellfounded: SWellFounded(R[x; y]) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m lg-acyclic: lg-acyclic(g) lg-connected: lg-connected(g;a;b) infix_ap: y

Latex:
\mforall{}[T:Type].  \mforall{}g:LabeledGraph(T).  (lg-acyclic(g)  \mLeftarrow{}{}\mRightarrow{}  SWellFounded(lg-edge(g;a;b)))



Date html generated: 2016_05_17-AM-10_11_13
Last ObjectModification: 2016_01_18-AM-00_24_26

Theory : process-model


Home Index