Nuprl Lemma : mk-tagged_wf_pCom_msg
∀[M:Type ⟶ Type]
  ∀[Q:Type]. ∀[m:pMsg(T.M[T])]. (mk-tagged("msg";m) ∈ Com(P.M[P]) Q) supposing Process(P.M[P]) ⊆r Q 
  supposing Monotone(T.M[T])
Proof
Definitions occuring in Statement : 
pMsg: pMsg(P.M[P]), 
Process: Process(P.M[P]), 
Com: Com(P.M[P]), 
type-monotone: Monotone(T.F[T]), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
token: "$token", 
universe: Type, 
mk-tagged: mk-tagged(tg;x)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
Com: Com(P.M[P]), 
tagged+: T |+ z:B, 
isect2: T1 ⋂ T2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
so_apply: x[s], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
eq_atom: x =a y, 
assert: ↑b, 
true: True, 
pMsg: pMsg(P.M[P]), 
subtype_rel: A ⊆r B, 
type-monotone: Monotone(T.F[T]), 
so_lambda: λ2x.t[x], 
bfalse: ff, 
bnot: ¬bb, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
top: Top
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[Q:Type].  \mforall{}[m:pMsg(T.M[T])].  (mk-tagged("msg";m)  \mmember{}  Com(P.M[P])  Q)  supposing  Process(P.M[P])  \msubseteq{}r  Q 
    supposing  Monotone(T.M[T])
Date html generated:
2016_05_17-AM-10_22_42
Last ObjectModification:
2015_12_29-PM-05_28_50
Theory : process-model
Home
Index