Nuprl Lemma : null-data-stream
∀[L:Top List]. ∀[P:Top].  (null(data-stream(P;L)) ~ null(L))
Proof
Definitions occuring in Statement : 
data-stream: data-stream(P;L), 
null: null(as), 
list: T List, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
data-stream: data-stream(P;L), 
firstn: firstn(n;as), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
select: L[n], 
uimplies: b supposing a, 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
upto: upto(n), 
from-upto: [n, m), 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
bfalse: ff, 
cons: [a / b], 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[L:Top  List].  \mforall{}[P:Top].    (null(data-stream(P;L))  \msim{}  null(L))
Date html generated:
2016_05_17-AM-10_21_15
Last ObjectModification:
2016_01_18-AM-00_20_55
Theory : process-model
Home
Index