Nuprl Lemma : pRun_functionality
∀[M:Type ⟶ Type]
  ∀[nat2msg:ℕ ⟶ pMsg(P.M[P])]. ∀[loc2msg:Id ⟶ pMsg(P.M[P])]. ∀[env:pEnvType(P.M[P])]. ∀[S1,S2:System(P.M[P])].
    pRun(S1;env;nat2msg;loc2msg) = pRun(S2;env;nat2msg;loc2msg) ∈ pRunType(P.M[P]) supposing system-equiv(P.M[P];S1;S2) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pEnvType: pEnvType(T.M[T]), 
pRunType: pRunType(T.M[T]), 
system-equiv: system-equiv(T.M[T];S1;S2), 
System: System(P.M[P]), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
pRunType: pRunType(T.M[T]), 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat: ℕ, 
pRun: pRun(S0;env;nat2msg;loc2msg), 
ycomb: Y, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
ge: i ≥ j , 
int_upper: {i...}, 
fulpRunType: fulpRunType(T.M[T]), 
System: System(P.M[P]), 
cand: A c∧ B, 
pEnvType: pEnvType(T.M[T]), 
nat_plus: ℕ+, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True, 
spreadn: spread3, 
system-equiv: system-equiv(T.M[T];S1;S2), 
do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm), 
ldag: LabeledDAG(T), 
squash: ↓T, 
let: let, 
lg-is-source: lg-is-source(g;i), 
pInTransit: pInTransit(P.M[P]), 
pi1: fst(t), 
Id: Id, 
create-component: create-component(t;P;x;Cs;L), 
select: L[n], 
cons: [a / b], 
process-equiv: process-equiv, 
component: component(P.M[P]), 
nequal: a ≠ b ∈ T 
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[nat2msg:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[loc2msg:Id  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[env:pEnvType(P.M[P])].
    \mforall{}[S1,S2:System(P.M[P])].
        pRun(S1;env;nat2msg;loc2msg)  =  pRun(S2;env;nat2msg;loc2msg) 
        supposing  system-equiv(P.M[P];S1;S2) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_40_56
Last ObjectModification:
2016_01_18-AM-00_23_04
Theory : process-model
Home
Index