Nuprl Lemma : es-E-interface-conditional

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  (E([X?Y]) ⊆{e:E| (↑e ∈b X) ∨ (↑e ∈b Y)} )


Proof




Definitions occuring in Statement :  es-E-interface: E(X) cond-class: [X?Y] in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top or: P ∨ Q set: {x:A| B[x]}  universe: Type
Lemmas :  eclass_wf top_wf es-E_wf event-ordering+_subtype event-ordering+_wf is-cond-class or_wf assert_wf in-eclass_wf cond-class_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].    (E([X?Y])  \msubseteq{}r  \{e:E|  (\muparrow{}e  \mmember{}\msubb{}  X)  \mvee{}  (\muparrow{}e  \mmember{}\msubb{}  Y)\}  )



Date html generated: 2015_07_17-PM-00_56_45
Last ObjectModification: 2015_01_27-PM-10_46_21

Home Index