Nuprl Lemma : es-E-interface-conditional2
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  (E([X?Y]) ⊆r {e:E| (↑e ∈b Y) ∨ (↑e ∈b X)} )
Proof
Definitions occuring in Statement : 
es-E-interface: E(X)
, 
cond-class: [X?Y]
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
assert: ↑b
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
, 
universe: Type
Lemmas : 
eclass_wf, 
top_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
es-E-interface_wf, 
cond-class_wf, 
is-cond-class, 
or_wf, 
assert_wf, 
in-eclass_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].    (E([X?Y])  \msubseteq{}r  \{e:E|  (\muparrow{}e  \mmember{}\msubb{}  Y)  \mvee{}  (\muparrow{}e  \mmember{}\msubb{}  X)\}  )
Date html generated:
2015_07_17-PM-00_56_54
Last ObjectModification:
2015_01_27-PM-10_47_57
Home
Index