Nuprl Lemma : ma-state-subtype

[ds,ds':ltg:Id fp-> Type].  State(ds') ⊆State(ds) supposing ds ⊆ ds'


Proof




Definitions occuring in Statement :  ma-state: State(ds) fpf-sub: f ⊆ g fpf: a:A fp-> B[a] id-deq: IdDeq Id: Id uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Lemmas :  subtype_rel_dep_function Id_wf fpf-cap_wf id-deq_wf top_wf subtype-fpf-cap-top fpf-sub_wf fpf_wf
\mforall{}[ds,ds':ltg:Id  fp->  Type].    State(ds')  \msubseteq{}r  State(ds)  supposing  ds  \msubseteq{}  ds'



Date html generated: 2015_07_17-AM-11_17_30
Last ObjectModification: 2015_01_28-AM-07_36_09

Home Index