Nuprl Lemma : max-fst-class_wf

[Info,A,T:Type].  ∀[X:EClass(T × A)]. (MaxFst(X) ∈ EClass(T × A)) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  max-fst-class: MaxFst(X) eclass: EClass(A[eo; e]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] int: universe: Type
Lemmas :  max-f-class_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf subtype_rel_wf

Latex:
\mforall{}[Info,A,T:Type].    \mforall{}[X:EClass(T  \mtimes{}  A)].  (MaxFst(X)  \mmember{}  EClass(T  \mtimes{}  A))  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2015_07_20-PM-03_50_40
Last ObjectModification: 2015_01_27-PM-10_06_37

Home Index