Nuprl Definition : flow-graph
flow-graph(S;T;F;G) ==
  ∀i,j:Id.  ((i ∈ S) 
⇒ (j ∈ S) 
⇒ (∀s:{s:T List| 0 < ||s||} . ((↑can-apply(F i j;s)) 
⇒ (i─→j)∈G)))
Definitions occuring in Statement : 
id-graph-edge: (i─→j)∈G
, 
Id: Id
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
assert: ↑b
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
natural_number: $n
, 
can-apply: can-apply(f;x)
FDL editor aliases : 
flow-graph
flow-graph
flow-graph(S;T;F;G)  ==
    \mforall{}i,j:Id.    ((i  \mmember{}  S)  {}\mRightarrow{}  (j  \mmember{}  S)  {}\mRightarrow{}  (\mforall{}s:\{s:T  List|  0  <  ||s||\}  .  ((\muparrow{}can-apply(F  i  j;s))  {}\mRightarrow{}  (i{}\mrightarrow{}j)\mmember{}G)))
Date html generated:
2015_07_17-AM-08_58_11
Last ObjectModification:
2013_03_25-PM-01_54_17
Home
Index