Nuprl Lemma : st-atom_wf
∀[T:Id ─→ Type]. ∀[tab:secret-table(T)]. ∀[n:ℕ||tab|| ]. (st-atom(tab;n) ∈ Atom1)
Proof
Definitions occuring in Statement :
st-atom: st-atom(tab;n)
,
st-length: ||tab||
,
secret-table: secret-table(T)
,
Id: Id
,
int_seg: {i..j-}
,
atom: Atom$n
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
natural_number: $n
,
universe: Type
Lemmas :
nat_wf,
data_wf,
int_seg_wf,
Id_wf
\mforall{}[T:Id {}\mrightarrow{} Type]. \mforall{}[tab:secret-table(T)]. \mforall{}[n:\mBbbN{}||tab|| ]. (st-atom(tab;n) \mmember{} Atom1)
Date html generated:
2015_07_17-AM-08_56_26
Last ObjectModification:
2015_01_27-PM-01_03_59
Home
Index