Nuprl Lemma : continuous-ldag
∀[F:Type ─→ Type]. Continuous+(T.LabeledDAG(F[T])) supposing Continuous+(T.F[T])
Proof
Definitions occuring in Statement : 
ldag: LabeledDAG(T)
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
strong-continuous-set, 
labeled-graph_wf, 
top_wf, 
is-dag_wf, 
subtype_rel-labeled-graph, 
continuous-labeled-graph, 
nat_wf, 
strong-type-continuous_wf
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.LabeledDAG(F[T]))  supposing  Continuous+(T.F[T])
Date html generated:
2015_07_22-PM-00_29_54
Last ObjectModification:
2015_01_28-PM-11_33_30
Home
Index