Nuprl Lemma : continuous-ldag

[F:Type ─→ Type]. Continuous+(T.LabeledDAG(F[T])) supposing Continuous+(T.F[T])


Proof




Definitions occuring in Statement :  ldag: LabeledDAG(T) strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  strong-continuous-set labeled-graph_wf top_wf is-dag_wf subtype_rel-labeled-graph continuous-labeled-graph nat_wf strong-type-continuous_wf

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.LabeledDAG(F[T]))  supposing  Continuous+(T.F[T])



Date html generated: 2015_07_22-PM-00_29_54
Last ObjectModification: 2015_01_28-PM-11_33_30

Home Index