Nuprl Lemma : system-strongly-realizes-and1

[M:Type ─→ Type]
  ∀[A:pEnvType(P.M[P]) ─→ pRunType(P.M[P]) ─→ ℙ]
    ∀n2m:ℕ ─→ pMsg(P.M[P]). ∀l2m:Id ─→ pMsg(P.M[P]). ∀S1,S2:InitialSystem(P.M[P]).
      ∀[B1,B2:EO+(pMsg(P.M[P])) ─→ ℙ].
        (assuming(env,r.A[env;r])
          S1 |= eo.B1[eo]
         assuming(env,r.A[env;r])
            S2 |= eo.B2[eo]
         (∀S:InitialSystem(P.M[P])
              (sub-system(P.M[P];S1;S)
               sub-system(P.M[P];S2;S)
               assuming(env,r.A[env;r])
                  |= eo.B1[eo] ∧ B2[eo]))) 
  supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  system-strongly-realizes: system-strongly-realizes sub-system: sub-system(P.M[P];S1;S2) InitialSystem: InitialSystem(P.M[P]) pEnvType: pEnvType(T.M[T]) pRunType: pRunType(T.M[T]) pMsg: pMsg(P.M[P]) event-ordering+: EO+(Info) Id: Id strong-type-continuous: Continuous+(T.F[T]) nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ─→ B[x] universe: Type
Lemmas :  nat_wf sub-system_wf InitialSystem_wf system-strongly-realizes_wf pRunType_wf pEnvType_wf event-ordering+_wf pMsg_wf Id_wf strong-type-continuous_wf sub-system_transitivity pRun_wf2

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[A:pEnvType(P.M[P])  {}\mrightarrow{}  pRunType(P.M[P])  {}\mrightarrow{}  \mBbbP{}]
        \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S1,S2:InitialSystem(P.M[P]).
            \mforall{}[B1,B2:EO+(pMsg(P.M[P]))  {}\mrightarrow{}  \mBbbP{}].
                (assuming(env,r.A[env;r])
                    S1  |=  eo.B1[eo]
                {}\mRightarrow{}  assuming(env,r.A[env;r])
                        S2  |=  eo.B2[eo]
                {}\mRightarrow{}  (\mforall{}S:InitialSystem(P.M[P])
                            (sub-system(P.M[P];S1;S)
                            {}\mRightarrow{}  sub-system(P.M[P];S2;S)
                            {}\mRightarrow{}  assuming(env,r.A[env;r])
                                    S  |=  eo.B1[eo]  \mwedge{}  B2[eo]))) 
    supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_20_30
Last ObjectModification: 2015_01_28-PM-11_17_25

Home Index