Nuprl Lemma : vr_SURJ_implies_RINV

[A,B:Type]. [f:A  B].  (vr_SURJ(f;A;B)  vr_RINV(f;A;B))


Proof not projected




Definitions occuring in Statement :  vr_RINV: vr_RINV(f;A;B) vr_SURJ: vr_SURJ(f;A;B) uall: [x:A]. B[x] implies: P  Q function: x:A  B[x] universe: Type
Definitions :  lambda: x.A[x] equal: s = t apply: f a isect: x:A. B[x] uall: [x:A]. B[x] function: x:A  B[x] all: x:A. B[x] member: t  T vr_SURJ: vr_SURJ(f;A;B) universe: Type product: x:A  B[x] exists: x:A. B[x] vr_RINV: vr_RINV(f;A;B) implies: P  Q vr_AC: vr_AC limited-type: LimitedType prop: subtype_rel: A r B uiff: uiff(P;Q) and: P  Q uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B)
Lemmas :  vr_AC_r vr_SURJ_wf

\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    (vr\_SURJ(f;A;B)  {}\mRightarrow{}  vr\_RINV(f;A;B))


Date html generated: 2012_02_20-PM-03_34_42
Last ObjectModification: 2012_02_02-PM-01_55_37

Home Index