{ [locs:Id List]. [hdr:Atom List]. [typ:LimitedType]. [P:typ  ].
    (BaseDef(locs;hdr;typ;P)  BaseDef) }

{ Proof }



Definitions occuring in Statement :  BaseDef: BaseDef(locs;hdr;typ;P) base-deriv: BaseDef Id: Id bool: uall: [x:A]. B[x] member: t  T function: x:A  B[x] list: type List atom: Atom limited-type: LimitedType
Definitions :  fpf: a:A fp-B[a] subtype: S  T es-E-interface: E(X) uimplies: b supposing a subtype_rel: A r B eclass: EClass(A[eo; e]) isect: x:A. B[x] product: x:A  B[x] exists: x:A. B[x] intensional-universe: IType set: {x:A| B[x]}  Id: Id atom: Atom all: x:A. B[x] uall: [x:A]. B[x] function: x:A  B[x] bool: list: type List equal: s = t limited-type: LimitedType MaAuto: Error :MaAuto,  universe: Type member: t  T AssertBY: Error :AssertBY,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) nil: [] pair: <a, b> base-deriv: BaseDef name: Name BaseDef: BaseDef(locs;hdr;typ;P) axiom: Ax
Lemmas :  name_wf Id_wf bool_wf limited-type_wf subtype_rel_wf member_wf intensional-universe_wf

\mforall{}[locs:Id  List].  \mforall{}[hdr:Atom  List].  \mforall{}[typ:LimitedType].  \mforall{}[P:typ  {}\mrightarrow{}  \mBbbB{}].
    (BaseDef(locs;hdr;typ;P)  \mmember{}  BaseDef)


Date html generated: 2011_08_17-PM-06_30_36
Last ObjectModification: 2011_06_18-AM-11_52_57

Home Index