{ valueall-type(Id) }

{ Proof }



Definitions occuring in Statement :  Id: Id valueall-type: valueall-type(T)
Definitions :  universe: Type atom: Atom$n int: atom: Atom equal: s = t rec: rec(x.A[x]) quotient: x,y:A//B[x; y] set: {x:A| B[x]}  tunion: x:A.B[x] b-union: A  B union: left + right implies: P  Q list: type List subtype_rel: A r B less_than: a < b all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a isect: x:A. B[x] ge: i  j  le: A  B not: A strong-subtype: strong-subtype(A;B) Id: Id valueall-type: valueall-type(T) MaAuto: Error :MaAuto,  tactic: Error :tactic
Lemmas :  Id_wf valueall-type_wf atom2-valueall-type

valueall-type(Id)


Date html generated: 2011_08_10-AM-07_43_15
Last ObjectModification: 2011_06_18-AM-08_09_52

Home Index