{ SQType(Kind) }

{ Proof }



Definitions occuring in Statement :  Kind: Kind sq_type: SQType(T)
Definitions :  tactic: Error :tactic,  CollapseTHEN: Error :CollapseTHEN,  Kind: Kind true: True btrue: tt bfalse: ff bool: inl: inl x  assert: b false: False decide: case b of inl(x) =s[x] | inr(y) =t[y] inr: inr x  union: left + right pi1: fst(t) IdLnk: IdLnk prop: limited-type: LimitedType pi2: snd(t) so_lambda: x.t[x] lambda: x.A[x] universe: Type pair: <a, b> product: x:A  B[x] sqequal: s ~ t implies: P  Q guard: {T} member: t  T equal: s = t Id: Id sq_type: SQType(T) all: x:A. B[x] function: x:A  B[x]
Lemmas :  Id_sq Id_wf pi2_wf guard_wf pi1_wf IdLnk_sq IdLnk_wf decide_wf assert_wf bool_wf bfalse_wf btrue_wf

SQType(Kind)


Date html generated: 2010_08_26-PM-11_32_40
Last ObjectModification: 2009_10_14-PM-01_23_18

Home Index