{ BaseDef  ' }

{ Proof }



Definitions occuring in Statement :  base-deriv: BaseDef member: t  T universe: Type
Definitions :  equal: s = t member: t  T bool: universe: Type limited-type: LimitedType set: {x:A| B[x]}  eclass: EClass(A[eo; e]) function: x:A  B[x] all: x:A. B[x] subtype_rel: A r B fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) product: x:A  B[x] exists: x:A. B[x] intensional-universe: IType isect: x:A. B[x] b-union: A  B union: left + right list: type List top: Top true: True fpf-cap: f(x)?z subtype: S  T implies: P  Q es-E-interface: E(X) Id: Id name: Name base-deriv: BaseDef ldag: LabeledDAG(T) tag-by: zT or: P  Q rev_implies: P  Q and: P  Q iff: P  Q labeled-graph: LabeledGraph(T) record: record(x.T[x]) isect2: T1  T2 record+: record+ fset: fset(T) fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  name_wf Id_wf intensional-universe_wf member_wf limited-type_wf subtype_rel_wf bool_wf

BaseDef  \mmember{}  \mBbbU{}'


Date html generated: 2010_08_27-PM-08_07_28
Last ObjectModification: 2010_06_18-AM-12_52_59

Home Index