{ [dv:ClassDerivation]
    (fst(Meaning(dv))) = hd(cdv-types(dv)) supposing WF(dv) }

{ Proof }



Definitions occuring in Statement :  cdv-meaning: Meaning(dv) cdv-wf: WF(dv) cdv-types: cdv-types(dv) classderiv: ClassDerivation hd: hd(l) uimplies: b supposing a uall: [x:A]. B[x] pi1: fst(t) universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a pi1: fst(t) cdv-meaning: Meaning(dv) hd: hd(l) cdv-types: cdv-types(dv) member: t  T cdv-classes-and-programs: cdv-classes-and-programs(dv) implies: P  Q all: x:A. B[x] top: Top subtype: S  T prop: le: A  B ge: i  j  not: A false: False append: as @ bs map: map(f;as) ycomb: Y spreadn: spread3 classderiv: ClassDerivation cdv-wf: WF(dv) unit: Unit and: P  Q length: ||as|| nat: cdv-class-program: ClassProgram cdvbase: cdvbase(args) cdvpair: cdvpair(fst;snd) it: cdvdelay: cdvdelay(X;dummy) cdvcomb: cdvcomb(typ;argtype;arg;fun) cdvreccomb: cdvreccomb(typ;argtype;arg;fun)
Lemmas :  classderiv_wf base-deriv-type_wf cdv-wf_wf cdvbase_wf cdvcomb_wf cdvreccomb_wf cdv-classes-and-programs_wf cdv-class-program_wf cdv-classes-non-null length_wf_nat top_wf nat_wf length_wf1 member_wf pi1_wf_top hd_wf length_wf2 cdv-types_wf cdv-types-non-empty ge_wf

\mforall{}[dv:ClassDerivation].  (fst(Meaning(dv)))  =  hd(cdv-types(dv))  supposing  WF(dv)


Date html generated: 2011_08_17-PM-04_28_54
Last ObjectModification: 2011_06_18-AM-11_41_39

Home Index