{ [x:ClassDerivation]
    cdvcomb-fun(x)  cdvcomb-argtype(x)  bag(cdvcomb-typ(x)) 
    supposing cdvcomb?(x) }

{ Proof }



Definitions occuring in Statement :  cdvcomb-fun: cdvcomb-fun(x) cdvcomb-argtype: cdvcomb-argtype(x) cdvcomb-typ: cdvcomb-typ(x) cdvcomb?: cdvcomb?(x) classderiv: ClassDerivation assert: b uimplies: b supposing a uall: [x:A]. B[x] member: t  T function: x:A  B[x] bag: bag(T)
Definitions :  true: True natural_number: $n classderiv_ind: classderiv_ind apply: f a it: false: False classderiv_ind_cdvreccomb: classderiv_ind_cdvreccomb_compseq_tag_def classderiv_ind_cdvcomb: classderiv_ind_cdvcomb_compseq_tag_def classderiv_ind_cdvdelay: classderiv_ind_cdvdelay_compseq_tag_def classderiv_ind_cdvpair: classderiv_ind_cdvpair_compseq_tag_def classderiv_ind_cdvbase: classderiv_ind_cdvbase_compseq_tag_def int: unit: Unit set: {x:A| B[x]}  product: x:A  B[x] universe: Type base-deriv: BaseDef union: left + right rec: rec(x.A[x]) implies: P  Q all: x:A. B[x] cdvcomb?: cdvcomb?(x) uall: [x:A]. B[x] function: x:A  B[x] cdvcomb-argtype: cdvcomb-argtype(x) bag: bag(T) cdvcomb-typ: cdvcomb-typ(x) cdvcomb-fun: cdvcomb-fun(x) classderiv: ClassDerivation axiom: Ax uimplies: b supposing a isect: x:A. B[x] assert: b prop: member: t  T equal: s = t
Lemmas :  assert_wf cdvcomb?_wf classderiv_wf true_wf false_wf

\mforall{}[x:ClassDerivation]
    cdvcomb-fun(x)  \mmember{}  cdvcomb-argtype(x)  {}\mrightarrow{}  bag(cdvcomb-typ(x))  supposing  \muparrow{}cdvcomb?(x)


Date html generated: 2011_08_17-PM-04_25_42
Last ObjectModification: 2011_06_18-AM-11_37_51

Home Index