{ [B:Type]. [n:]. [A:n  Type]. [f:Id  funtype(n;A;bag(B))].
    (concat-lifting-loc-gen(n;f)  Id  k:n  bag(A k)  bag(B)) }

{ Proof }



Definitions occuring in Statement :  concat-lifting-loc-gen: concat-lifting-loc-gen(n;f) Id: Id int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a function: x:A  B[x] natural_number: $n universe: Type bag: bag(T) funtype: funtype(n;A;T)
Definitions :  axiom: Ax concat-lifting-loc-gen: concat-lifting-loc-gen(n;f) bag: bag(T) apply: f a natural_number: $n int_seg: {i..j} function: x:A  B[x] Id: Id equal: s = t member: t  T isect: x:A. B[x] funtype: funtype(n;A;T) uall: [x:A]. B[x] universe: Type nat: all: x:A. B[x] int: subtype: S  T grp_car: |g| real: set: {x:A| B[x]}  lambda: x.A[x] concat-lifting-loc: concat-lifting-loc(n;bags;loc;f)
Lemmas :  bag_wf int_seg_wf concat-lifting-loc_wf Id_wf nat_wf funtype_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[f:Id  {}\mrightarrow{}  funtype(n;A;bag(B))].
    (concat-lifting-loc-gen(n;f)  \mmember{}  Id  {}\mrightarrow{}  k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)  {}\mrightarrow{}  bag(B))


Date html generated: 2011_08_17-PM-06_12_29
Last ObjectModification: 2011_06_02-PM-06_11_53

Home Index