{ [B:Type]. [n:]. [A:n  Type]. [bags:k:n  bag(A k)].
  [f:Id  funtype(n;A;bag(B))]. [b:B]. [l:Id].
    (bag-member(B;b;concat-lifting-loc(n;bags;l;f))
     lst:k:n  (A k)
          (([k:n]. bag-member(A k;lst k;bags k))
           bag-member(B;b;uncurry-rev(n;f l) lst))) }

{ Proof }



Definitions occuring in Statement :  concat-lifting-loc: concat-lifting-loc(n;bags;loc;f) uncurry-rev: uncurry-rev(n;f) Id: Id int_seg: {i..j} nat: uall: [x:A]. B[x] exists: x:A. B[x] iff: P  Q squash: T and: P  Q apply: f a function: x:A  B[x] natural_number: $n universe: Type bag-member: bag-member(T;x;bs) bag: bag(T) funtype: funtype(n;A;T)
Definitions :  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  apply: f a and: P  Q iff: P  Q isect: x:A. B[x] uall: [x:A]. B[x] int_seg: {i..j} bag: bag(T) function: x:A  B[x] universe: Type set: {x:A| B[x]}  squash: T implies: P  Q product: x:A  B[x] nat: quotient: x,y:A//B[x; y] funtype: funtype(n;A;T) Id: Id primrec: primrec(n;b;c) atom: Atom$n member: t  T equal: s = t all: x:A. B[x] natural_number: $n int: subtype: S  T grp_car: |g| real: concat-lifting-loc: concat-lifting-loc(n;bags;loc;f)
Lemmas :  concat-lifting-member nat_wf int_seg_wf bag_wf funtype_wf Id_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:Id  {}\mrightarrow{}  funtype(n;A;bag(B))].
\mforall{}[b:B].  \mforall{}[l:Id].
    (bag-member(B;b;concat-lifting-loc(n;bags;l;f))
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\mBbbN{}n  {}\mrightarrow{}  (A  k)
                ((\mforall{}[k:\mBbbN{}n].  bag-member(A  k;lst  k;bags  k))  \mwedge{}  bag-member(B;b;uncurry-rev(n;f  l)  lst)))


Date html generated: 2011_08_17-PM-06_12_11
Last ObjectModification: 2011_06_01-PM-07_41_45

Home Index