{ 
[F:Type 
 Type]
    Continuous+(T.LabeledGraph(F[T])) supposing Continuous+(T.F[T]) }
{ Proof }
Definitions occuring in Statement : 
labeled-graph: LabeledGraph(T), 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
function: x:A 
 B[x], 
universe: Type
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
so_apply: x[s], 
labeled-graph: LabeledGraph(T), 
member: t 
 T, 
all:
x:A. B[x], 
so_lambda: 
x y.t[x; y], 
so_lambda: 
x.t[x], 
ext-eq: A 
 B, 
and: P 
 Q, 
implies: P 
 Q, 
so_apply: x[s1;s2], 
prop:
Lemmas : 
Error :strong-continuous-dep-isect, 
top_wf, 
int_seg_wf, 
length_wf1, 
strong-continuous-list, 
strong-continuous-product, 
continuous-constant, 
nat_wf, 
strong-type-continuous_wf
\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.LabeledGraph(F[T]))  supposing  Continuous+(T.F[T])
Date html generated:
2011_08_16-PM-06_35_36
Last ObjectModification:
2011_06_20-AM-01_54_51
Home
Index