{ [F:Type  Type]
    Continuous+(T.LabeledGraph(F[T])) supposing Continuous+(T.F[T]) }

{ Proof }



Definitions occuring in Statement :  labeled-graph: LabeledGraph(T) strong-type-continuous: Continuous+(T.F[T]) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a strong-type-continuous: Continuous+(T.F[T]) so_apply: x[s] labeled-graph: LabeledGraph(T) member: t  T all: x:A. B[x] so_lambda: x y.t[x; y] so_lambda: x.t[x] ext-eq: A  B and: P  Q implies: P  Q so_apply: x[s1;s2] prop:
Lemmas :  Error :strong-continuous-dep-isect,  top_wf int_seg_wf length_wf1 strong-continuous-list strong-continuous-product continuous-constant nat_wf strong-type-continuous_wf

\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.LabeledGraph(F[T]))  supposing  Continuous+(T.F[T])


Date html generated: 2011_08_16-PM-06_35_36
Last ObjectModification: 2011_06_20-AM-01_54_51

Home Index