{ [A:']. [B:Type]. [L:A List].
    (data-stream(df-program-meaning(null-df-program(B));L) ~ map(x.{};L)) }

{ Proof }



Definitions occuring in Statement :  null-df-program: null-df-program(B) df-program-meaning: df-program-meaning(dfp) data-stream: data-stream(P;L) map: map(f;as) uall: [x:A]. B[x] lambda: x.A[x] list: type List universe: Type sqequal: s ~ t empty-bag: {}
Definitions :  inr: inr x  decide: case b of inl(x) =s[x] | inr(y) =t[y] so_lambda: x y.t[x; y] rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) dataflow-ap: df(a) void: Void subtype: S  T top: Top tl: tl(l) hd: hd(l) cons: [car / cdr] data_stream_nil: data_stream_nil{data_stream_nil_compseq_tag_def:o}(P) equal: s = t strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) empty-bag: {} map: map(f;as) data-stream: data-stream(P;L) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] null-df-program: null-df-program(B) df-program-meaning: df-program-meaning(dfp) lambda: x.A[x] uall: [x:A]. B[x] isect: x:A. B[x] member: t  T list: type List universe: Type sqequal: s ~ t Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR,  CollapseTHENA: Error :CollapseTHENA,  D: Error :D,  rec_dataflow_ap: rec_dataflow_ap_compseq_tag_def it: pair: <a, b> Try: Error :Try
Lemmas :  data-stream-cons member_wf top_wf

\mforall{}[A:\mBbbU{}'].  \mforall{}[B:Type].  \mforall{}[L:A  List].
    (data-stream(df-program-meaning(null-df-program(B));L)  \msim{}  map(\mlambda{}x.\{\};L))


Date html generated: 2011_08_16-AM-09_52_42
Last ObjectModification: 2011_06_18-AM-08_35_34

Home Index