{ [A,B:Type]. [f,g:dataflow(A;B)].  g  f supposing f  g }

{ Proof }



Definitions occuring in Statement :  dataflow-equiv: d1  d2 dataflow: dataflow(A;B) uimplies: b supposing a uall: [x:A]. B[x] universe: Type
Definitions :  tactic: Error :tactic,  Auto: Error :Auto,  RepeatFor: Error :RepeatFor,  ParallelOp: Error :ParallelOp,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  function: x:A  B[x] member: t  T list: type List lambda: x.A[x] all: x:A. B[x] dataflow-equiv: d1  d2 isect: x:A. B[x] prop: uimplies: b supposing a dataflow: dataflow(A;B) uall: [x:A]. B[x] universe: Type equal: s = t data-stream: data-stream(P;L) axiom: Ax subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] less_than: a < b not: A ge: i  j  le: A  B corec: corec(T.F[T]) strong-subtype: strong-subtype(A;B)
Lemmas :  dataflow_wf dataflow-equiv_wf

\mforall{}[A,B:Type].  \mforall{}[f,g:dataflow(A;B)].    g  \mequiv{}  f  supposing  f  \mequiv{}  g


Date html generated: 2011_08_10-AM-08_21_57
Last ObjectModification: 2011_06_18-AM-08_32_33

Home Index