{ [M,E:Type  Type]. [A,B:Type].
    dataflow(A;B) r process(P.M[P];P.E[P]) 
    supposing P:Type. ((M[P] r A)  (B r E[P])) }

{ Proof }



Definitions occuring in Statement :  process: process(P.M[P];P.E[P]) dataflow: dataflow(A;B) subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] and: P  Q function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a all: x:A. B[x] and: P  Q so_apply: x[s] dataflow: dataflow(A;B) process: process(P.M[P];P.E[P]) member: t  T implies: P  Q so_lambda: x.t[x] guard: {T}
Lemmas :  corec-subtype-corec2 subtype_rel_function subtype_rel_simple_product

\mforall{}[M,E:Type  {}\mrightarrow{}  Type].  \mforall{}[A,B:Type].
    dataflow(A;B)  \msubseteq{}r  process(P.M[P];P.E[P])  supposing  \mforall{}P:Type.  ((M[P]  \msubseteq{}r  A)  \mwedge{}  (B  \msubseteq{}r  E[P]))


Date html generated: 2011_08_16-AM-09_53_34
Last ObjectModification: 2011_06_18-AM-08_35_51

Home Index