{ [A,B:Type]. [F1,F2:dataflow(A;B)].
  [g:B  LabeledDAG(Id  (Com(P.A) Process(P.A)))].
    dataflow-to-Process(F1;g)dataflow-to-Process(F2;g) supposing F1  F2 }

{ Proof }



Definitions occuring in Statement :  dataflow-to-Process: dataflow-to-Process process-equiv: process-equiv Process: Process(P.M[P]) Com: Com(P.M[P]) ldag: LabeledDAG(T) dataflow-equiv: d1  d2 dataflow: dataflow(A;B) Id: Id uimplies: b supposing a uall: [x:A]. B[x] apply: f a function: x:A  B[x] product: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a process-equiv: process-equiv member: t  T all: x:A. B[x] pMsg: pMsg(P.M[P]) Process-stream: Process-stream(P;msgs) so_lambda: x.t[x] subtype: S  T squash: T true: True suptype: suptype(S; T) pExt: pExt(P.M[P]) pCom: pCom(P.M[P]) so_apply: x[s] dataflow-equiv: d1  d2 prop:
Lemmas :  pMsg_wf dataflow-equiv_wf ldag_wf Id_wf Com_wf Process_wf dataflow_wf datastream-dataflow-to-Process map_wf squash_wf true_wf pExt_wf

\mforall{}[A,B:Type].  \mforall{}[F1,F2:dataflow(A;B)].  \mforall{}[g:B  {}\mrightarrow{}  LabeledDAG(Id  \mtimes{}  (Com(P.A)  Process(P.A)))].
    dataflow-to-Process(F1;g)\mequiv{}dataflow-to-Process(F2;g)  supposing  F1  \mequiv{}  F2


Date html generated: 2011_08_16-PM-06_50_23
Last ObjectModification: 2011_06_18-AM-11_04_49

Home Index