{ [A,B:Type]. [P:dataflow(A;bag(B))].
    (delay-dataflow(P)  dataflow(A;bag(B))) }

{ Proof }



Definitions occuring in Statement :  delay-dataflow: delay-dataflow(P) dataflow: dataflow(A;B) uall: [x:A]. B[x] member: t  T universe: Type
Definitions :  set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: nat: bag-size: Error :bag-size,  natural_number: $n lt_int: i <z j lambda: x.A[x] so_lambda: x.t[x] empty-bag: Error :empty-bag,  buffer-dataflow: buffer-dataflow(s;x.P[x]) seq-dataflow: seq-dataflow(P;Q) function: x:A  B[x] all: x:A. B[x] bag: Error :bag,  delay-dataflow: delay-dataflow(P) dataflow: dataflow(A;B) equal: s = t axiom: Ax universe: Type uall: [x:A]. B[x] isect: x:A. B[x] member: t  T
Lemmas :  dataflow_wf seq-dataflow_wf buffer-dataflow_wf Error :bag_wf,  lt_int_wf Error :bag-size_wf,  nat_wf Error :empty-bag_wf

\mforall{}[A,B:Type].  \mforall{}[P:dataflow(A;bag(B))].    (delay-dataflow(P)  \mmember{}  dataflow(A;bag(B)))


Date html generated: 2011_08_10-AM-08_17_52
Last ObjectModification: 2011_06_18-AM-08_31_27

Home Index