{ [Info:']. [P:eclass-program{i:l}(Info)].
    (delay-program(P)  eclass-program{i:l}(Info)) }

{ Proof }



Definitions occuring in Statement :  delay-program: delay-program(P) eclass-program: eclass-program{i:l}(Info) uall: [x:A]. B[x] member: t  T universe: Type
Definitions :  fpf-dom: x  dom(f) fpf-cap: f(x)?z false: False rcv: rcv(l,tg) sq_type: SQType(T) IdLnk: IdLnk rationals: apply: f a so_apply: x[s] implies: P  Q union: left + right or: P  Q append: as @ bs guard: {T} locl: locl(a) Knd: Knd assert: b list: type List subtype: S  T atom: Atom$n bool: eclass: EClass(A[eo; e]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) df-program-type: df-program-type(dfp) delay-df-program: delay-df-program(dfp) lambda: x.A[x] subtype_rel: A r B fpf: a:A fp-B[a] l_member: (x  l) uimplies: b supposing a Id: Id dataflow-program: DataflowProgram(A) set: {x:A| B[x]}  so_lambda: x.t[x] fpf-compose: g o f pair: <a, b> product: x:A  B[x] spread: spread def function: x:A  B[x] all: x:A. B[x] delay-program: delay-program(P) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] universe: Type equal: s = t member: t  T eclass-program: eclass-program{i:l}(Info) MaAuto: Error :MaAuto,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  RepUR: Error :RepUR,  D: Error :D,  RepeatFor: Error :RepeatFor
Lemmas :  df-program-type_wf dataflow-program_wf delay-df-program_wf Id_wf fpf-compose_wf fpf_wf eclass-program_wf member_wf subtype_rel_wf l_member_wf

\mforall{}[Info:\mBbbU{}'].  \mforall{}[P:eclass-program\{i:l\}(Info)].    (delay-program(P)  \mmember{}  eclass-program\{i:l\}(Info))


Date html generated: 2011_08_16-PM-06_27_36
Last ObjectModification: 2011_06_20-AM-01_53_29

Home Index