{ [st1,st2:SimpleType].  (eq_st(st1;st2)  ) }

{ Proof }



Definitions occuring in Statement :  eq_st: eq_st(st1;st2) simple_type: SimpleType bool: uall: [x:A]. B[x] member: t  T
Definitions :  atom: Atom$n int: atom: Atom quotient: x,y:A//B[x; y] set: {x:A| B[x]}  tunion: x:A.B[x] b-union: A  B implies: P  Q list: type List union: left + right strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype: S  T subtype_rel: A r B valueall-type: valueall-type(T) uimplies: b supposing a eq_term: a == b universe: Type bnot: b bfalse: ff btrue: tt function: x:A  B[x] all: x:A. B[x] rec: rec(x.A[x]) bool: eq_st: eq_st(st1;st2) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] member: t  T equal: s = t simple_type: Error :simple_type,  tactic: Error :tactic
Lemmas :  eq_term_wf Error :simple_type_wf,  valueall-type_wf simple_type-valueall-type

\mforall{}[st1,st2:SimpleType].    (eq\_st(st1;st2)  \mmember{}  \mBbbB{})


Date html generated: 2011_08_17-PM-04_50_25
Last ObjectModification: 2011_02_04-AM-11_34_01

Home Index