{ [es:EO]. [e:E].  (loc(e)  {a:E| a loc e }  List) }

{ Proof }



Definitions occuring in Statement :  es-le-before: loc(e) es-le: e loc e'  es-E: E event_ordering: EO uall: [x:A]. B[x] member: t  T set: {x:A| B[x]}  list: type List
Definitions :  iff: P  Q exists: x:A. B[x] l_member: (x  l) implies: P  Q l_all: (xL.P[x]) lambda: x.A[x] so_lambda: x.t[x] fpf: a:A fp-B[a] apply: f a strong-subtype: strong-subtype(A;B) assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) record-select: r.x infix_ap: x f y dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B es-locl: (e <loc e') prop: union: left + right or: P  Q subtype: S  T es-loc: loc(e) Id: Id function: x:A  B[x] all: x:A. B[x] list: type List set: {x:A| B[x]}  es-le: e loc e'  es-le-before: loc(e) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] es-E: E member: t  T equal: s = t event_ordering: EO Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  tactic: Error :tactic
Lemmas :  l_all_wf es-E_wf es-le_wf l_member_wf es-loc_wf Id_wf member_wf es-le-before_wf list_set_type event_ordering_wf subtype_rel_wf es-locl_wf member-es-le-before

\mforall{}[es:EO].  \mforall{}[e:E].    (\mleq{}loc(e)  \mmember{}  \{a:E|  a  \mleq{}loc  e  \}    List)


Date html generated: 2011_08_16-AM-10_38_14
Last ObjectModification: 2011_06_18-AM-09_16_30

Home Index