{ [x:esharp_exp()]. esharplambda-var(x)  Atom supposing esharplambda?(x) }

{ Proof }



Definitions occuring in Statement :  esharplambda-var: esharplambda-var(x) esharplambda?: esharplambda?(x) esharp_exp: esharp_exp() assert: b uimplies: b supposing a uall: [x:A]. B[x] member: t  T atom: Atom
Definitions :  true: True esharp_exp_ind: esharp_exp_ind apply: f a it: false: False esharp_exp_ind_esharplet: esharp_exp_ind_esharplet_compseq_tag_def esharp_exp_ind_esharplambda: esharp_exp_ind_esharplambda_compseq_tag_def esharp_exp_ind_esharpapply: esharp_exp_ind_esharpapply_compseq_tag_def esharp_exp_ind_esharpop: esharp_exp_ind_esharpop_compseq_tag_def esharp_exp_ind_esharpbasic: esharp_exp_ind_esharpbasic_compseq_tag_def esharp_exp_ind_esharpvar: esharp_exp_ind_esharpvar_compseq_tag_def esharp-lhs: E#Lhs set: {x:A| B[x]}  product: x:A  B[x] base: Base union: left + right universe: Type rec: rec(x.A[x]) implies: P  Q function: x:A  B[x] all: x:A. B[x] esharplambda?: esharplambda?(x) uall: [x:A]. B[x] atom: Atom esharplambda-var: esharplambda-var(x) axiom: Ax uimplies: b supposing a isect: x:A. B[x] assert: b prop: esharp_exp: esharp_exp() equal: s = t member: t  T
Lemmas :  assert_wf esharplambda?_wf esharp_exp_wf true_wf false_wf

\mforall{}[x:esharp\_exp()].  esharplambda-var(x)  \mmember{}  Atom  supposing  \muparrow{}esharplambda?(x)


Date html generated: 2011_08_17-PM-05_54_10
Last ObjectModification: 2011_02_03-PM-04_43_38

Home Index