{ [T:Type]. (EO+(T) r EO) }

{ Proof }



Definitions occuring in Statement :  event-ordering+: EO+(Info) event_ordering: EO subtype_rel: A r B uall: [x:A]. B[x] universe: Type
Definitions :  fpf-cap: f(x)?z equal: s = t strong-subtype: strong-subtype(A;B) event-ordering+: EO+(Info) member: t  T universe: Type record+: record+ so_lambda: x.t[x] es-base-E: es-base-E(es) event_ordering: EO less_than: a < b subtype_rel: A r B all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P  Q product: x:A  B[x] le: A  B uimplies: b supposing a isect: x:A. B[x] not: A ge: i  j  token: "$token" lambda: x.A[x]
Lemmas :  record+_subtype_rel es-base-E_wf event_ordering_wf record+_wf subtype_rel_wf

\mforall{}[T:Type].  (EO+(T)  \msubseteq{}r  EO)


Date html generated: 2011_08_16-AM-11_20_35
Last ObjectModification: 2011_06_20-AM-00_25_19

Home Index