{ [T:Type]. [S:Id List]. [F:information-flow(T;S)]. [G:Graph(S)].
    (flow-graph(S;T;F;G)  ) }

{ Proof }



Definitions occuring in Statement :  flow-graph: flow-graph(S;T;F;G) information-flow: information-flow(T;S) id-graph: Graph(S) Id: Id uall: [x:A]. B[x] prop: member: t  T list: type List universe: Type
Definitions :  uall: [x:A]. B[x] information-flow: information-flow(T;S) member: t  T prop: flow-graph: flow-graph(S;T;F;G) all: x:A. B[x] implies: P  Q top: Top subtype: S  T suptype: suptype(S; T)
Lemmas :  Id_wf l_member_wf length_wf1 assert_wf can-apply_wf top_wf id-graph-edge_wf id-graph_wf information-flow_wf

\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[G:Graph(S)].    (flow-graph(S;T;F;G)  \mmember{}  \mBbbP{})


Date html generated: 2011_08_16-AM-11_02_10
Last ObjectModification: 2011_06_18-AM-09_35_37

Home Index