{ [T:Type]. [S:Id List]. [F:information-flow(T;S)]. [A:Type].
  [start:{i:Id| (i  S)}   A]. [c:A  T  A]. [H:{i:Id| (i  S)} 
                                                        {i:Id| (i  S)} 
                                                        A
                                                        (T + Top)].
    (flow-state-compression(S;T;F;H;start;c)  ) }

{ Proof }



Definitions occuring in Statement :  flow-state-compression: flow-state-compression(S;T;F;H;start;c) information-flow: information-flow(T;S) Id: Id uall: [x:A]. B[x] top: Top prop: member: t  T set: {x:A| B[x]}  function: x:A  B[x] union: left + right list: type List universe: Type l_member: (x  l)
Definitions :  uall: [x:A]. B[x] information-flow: information-flow(T;S) member: t  T prop: flow-state-compression: flow-state-compression(S;T;F;H;start;c) all: x:A. B[x] implies: P  Q so_lambda: x y.t[x; y] so_apply: x[s1;s2]
Lemmas :  Id_wf l_member_wf length_wf1 top_wf list_accum_wf information-flow_wf

\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[A:Type].  \mforall{}[start:\{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  A].
\mforall{}[c:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].  \mforall{}[H:\{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  \{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  A  {}\mrightarrow{}  (T  +  Top)].
    (flow-state-compression(S;T;F;H;start;c)  \mmember{}  \mBbbP{})


Date html generated: 2011_08_16-AM-11_02_16
Last ObjectModification: 2011_06_18-AM-09_35_43

Home Index