{ [A:Type]. eq,P:Top.  (ydom(). w=(y)   P[y;w]  True) }

{ Proof }



Definitions occuring in Statement :  fpf-all: xdom(f). v=f(x)   P[x; v] fpf-empty: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] all: x:A. B[x] iff: P  Q true: True universe: Type
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] fpf-all: xdom(f). v=f(x)   P[x; v] fpf-empty: assert: b fpf-dom: x  dom(f) deq-member: deq-member(eq;x;L) pi1: fst(t) reduce: reduce(f;k;as) bfalse: ff ifthenelse: if b then t else f fi  member: t  T iff: P  Q implies: P  Q false: False true: True and: P  Q rev_implies: P  Q prop:
Lemmas :  top_wf false_wf true_wf

\mforall{}[A:Type].  \mforall{}eq,P:Top.    (\mforall{}y\mmember{}dom(\motimes{}).  w=\motimes{}(y)  {}\mRightarrow{}    P[y;w]  \mLeftarrow{}{}\mRightarrow{}  True)


Date html generated: 2011_08_10-AM-08_07_23
Last ObjectModification: 2011_06_18-AM-08_25_16

Home Index